Sebanyak 278 item atau buku ditemukan

An Introduction to Real Analysis

This book provides a compact, but thorough, introduction to the subject of Real Analysis. It is intended for a senior undergraduate and for a beginning graduate one-semester course.

This book provides a compact, but thorough, introduction to the subject of Real Analysis. It is intended for a senior undergraduate and for a beginning graduate one-semester course.

An Introduction to Classical Real Analysis

This classic book is a text for a standard introductory course in real analysis, covering sequences and series, limits and continuity, differentiation, elementary transcendental functions, integration, infinite series and products, and trigonometric series. The author has scrupulously avoided any presumption at all that the reader has any knowledge of mathematical concepts until they are formally presented in the book. One significant way in which this book differs from other texts at this level is that the integral which is first mentioned is the Lebesgue integral on the real line. There are at least three good reasons for doing this. First, this approach is no more difficult to understand than is the traditional theory of the Riemann integral. Second, the readers will profit from acquiring a thorough understanding of Lebesgue integration on Euclidean spaces before they enter into a study of abstract measure theory. Third, this is the integral that is most useful to current applied mathematicians and theoretical scientists, and is essential for any serious work with trigonometric series. The exercise sets are a particularly attractive feature of this book. A great many of the exercises are projects of many parts which, when completed in the order given, lead the student by easy stages to important and interesting results. Many of the exercises are supplied with copious hints. This new printing contains a large number of corrections and a short author biography as well as a list of selected publications of the author. This classic book is a text for a standard introductory course in real analysis, covering sequences and series, limits and continuity, differentiation, elementary transcendental functions, integration, infinite series and products, and trigonometric series. The author has scrupulously avoided any presumption at all that the reader has any knowledge of mathematical concepts until they are formally presented in the book. - See more at: http://bookstore.ams.org/CHEL-376-H/#sthash.wHQ1vpdk.dpuf This classic book is a text for a standard introductory course in real analysis, covering sequences and series, limits and continuity, differentiation, elementary transcendental functions, integration, infinite series and products, and trigonometric series. The author has scrupulously avoided any presumption at all that the reader has any knowledge of mathematical concepts until they are formally presented in the book. One significant way in which this book differs from other texts at this level is that the integral which is first mentioned is the Lebesgue integral on the real line. There are at least three good reasons for doing this. First, this approach is no more difficult to understand than is the traditional theory of the Riemann integral. Second, the readers will profit from acquiring a thorough understanding of Lebesgue integration on Euclidean spaces before they enter into a study of abstract measure theory. Third, this is the integral that is most useful to current applied mathematicians and theoretical scientists, and is essential for any serious work with trigonometric series. The exercise sets are a particularly attractive feature of this book. A great many of the exercises are projects of many parts which, when completed in the order given, lead the student by easy stages to important and interesting results. Many of the exercises are supplied with copious hints. This new printing contains a large number of corrections and a short author biography as well as a list of selected publications of the author. This classic book is a text for a standard introductory course in real analysis, covering sequences and series, limits and continuity, differentiation, elementary transcendental functions, integration, infinite series and products, and trigonometric series. The author has scrupulously avoided any presumption at all that the reader has any knowledge of mathematical concepts until they are formally presented in the book. - See more at: http://bookstore.ams.org/CHEL-376-H/#sthash.wHQ1vpdk.dpuf

This classic book is a text for a standard introductory course in real analysis, covering sequences and series, limits and continuity, differentiation, elementary transcendental functions, integration, infinite series and products, and ...

Real Analysis with an Introduction to Wavelets and Applications

Real Analysis with an Introduction to Wavelets and Applications is an in-depth look at real analysis and its applications, including an introduction to wavelet analysis, a popular topic in "applied real analysis". This text makes a very natural connection between the classic pure analysis and the applied topics, including measure theory, Lebesgue Integral, harmonic analysis and wavelet theory with many associated applications. The text is relatively elementary at the start, but the level of difficulty steadily increases The book contains many clear, detailed examples, case studies and exercises Many real world applications relating to measure theory and pure analysis Introduction to wavelet analysis

This text makes a very natural connection between the classic pure analysis and the applied topics, including measure theory, Lebesgue Integral, harmonic analysis and wavelet theory with many associated applications.

Spaces: An Introduction to Real Analysis

Spaces is a modern introduction to real analysis at the advanced undergraduate level. It is forward-looking in the sense that it first and foremost aims to provide students with the concepts and techniques they need in order to follow more advanced courses in mathematical analysis and neighboring fields. The only prerequisites are a solid understanding of calculus and linear algebra. Two introductory chapters will help students with the transition from computation-based calculus to theory-based analysis. The main topics covered are metric spaces, spaces of continuous functions, normed spaces, differentiation in normed spaces, measure and integration theory, and Fourier series. Although some of the topics are more advanced than what is usually found in books of this level, care is taken to present the material in a way that is suitable for the intended audience: concepts are carefully introduced and motivated, and proofs are presented in full detail. Applications to differential equations and Fourier analysis are used to illustrate the power of the theory, and exercises of all levels from routine to real challenges help students develop their skills and understanding. The text has been tested in classes at the University of Oslo over a number of years.

The text has been tested in classes at the University of Oslo over a number of years.

A Concrete Introduction to Real Analysis, Second Edition

The Second Edition offers a major re-organization of the book, with the goal of making it much more competitive as a text for students. The revised edition will be appropriate for a one- or two-semester introductory real analysis course. Like the first edition, the primary audience is the large collection of students who will never take a graduate level analysis course. The choice of topics and level of coverage is suitable for future high school teachers, and for students who will become engineers or other professionals needing a sound working knowledge of undergraduate mathematics.

The Second Edition offers a major re-organization of the book, with the goal of making it much more competitive as a text for students. The revised edition will be appropriate for a one- or two-semester introductory real analysis course.

Introduction to Real Analysis

An Educational Approach

An accessible introduction to real analysis and its connection to elementary calculus Bridging the gap between the development and history of real analysis, Introduction to Real Analysis: An Educational Approach presents a comprehensive introduction to real analysis while also offering a survey of the field. With its balance of historical background, key calculus methods, and hands-on applications, this book provides readers with a solid foundation and fundamental understanding of real analysis. The book begins with an outline of basic calculus, including a close examination of problems illustrating links and potential difficulties. Next, a fluid introduction to real analysis is presented, guiding readers through the basic topology of real numbers, limits, integration, and a series of functions in natural progression. The book moves on to analysis with more rigorous investigations, and the topology of the line is presented along with a discussion of limits and continuity that includes unusual examples in order to direct readers' thinking beyond intuitive reasoning and on to more complex understanding. The dichotomy of pointwise and uniform convergence is then addressed and is followed by differentiation and integration. Riemann-Stieltjes integrals and the Lebesgue measure are also introduced to broaden the presented perspective. The book concludes with a collection of advanced topics that are connected to elementary calculus, such as modeling with logistic functions, numerical quadrature, Fourier series, and special functions. Detailed appendices outline key definitions and theorems in elementary calculus and also present additional proofs, projects, and sets in real analysis. Each chapter references historical sources on real analysis while also providing proof-oriented exercises and examples that facilitate the development of computational skills. In addition, an extensive bibliography provides additional resources on the topic. Introduction to Real Analysis: An Educational Approach is an ideal book for upper- undergraduate and graduate-level real analysis courses in the areas of mathematics and education. It is also a valuable reference for educators in the field of applied mathematics.

With its balance of historical background, key calculus methods, and hands-on applications, this book provides readers with a solid foundation and fundamental understanding of real analysis.

Introduction to Real Analysis

This text forms a bridge between courses in calculus and real analysis. Suitable for advanced undergraduates and graduate students, it focuses on the construction of mathematical proofs. 1996 edition.

This text forms a bridge between courses in calculus and real analysis. Suitable for advanced undergraduates and graduate students, it focuses on the construction of mathematical proofs. 1996 edition.