Sebanyak 33 item atau buku ditemukan

Sudut pandang peran LPSK dalam perlindungan saksi dan korban

Role of Lembaga Perlindungan Saksi dan Korban in protecting witness and victim of crimes in Indonesia.

Role of Lembaga Perlindungan Saksi dan Korban in protecting witness and victim of crimes in Indonesia.

Panduan penilaian dasar kesejahteraan manusia

Karena ketidakpastian kami tentang kualifikasi para calon pengguna panduan ini
, pengguna sasaran kami adalah orang yang bergelar sarjana di bidang ilmu
alam dan yang sederajat. Kami berharap bahwa para penilai juga memiliki
pengalaman di bidang ilmu sosial. Dalam kondisi seperti ini, kami berharap
pengguna dapat leluasa menggunakan metode-metode alternatif dan metode
tambahan yang tersedia dalam Panduan Pendamping Penilaian Dasar
Kesejahteraan Manusia ...

Panduan Menuju Olimpiade Matematika Untuk SD/MI

  • ISBN 13 : 9786022985877
  • Judul : Panduan Menuju Olimpiade Matematika Untuk SD/MI
  • Pengarang : Budi Prasadja,   Dita Adi Septianita,  
  • Penerbit : Erlangga
  • Klasifikasi : 510
  • Call Number : 510 BUD p
  • Bahasa : Indonesia
  • Penaklikan : 403 hlm
  • Tahun : 2015
  • Halaman : 0
  • Ketersediaan :
    2022-41422-0013
    Tersedia di Pustaka Kubang Putih - UIN Sjech M. Djamil Djambek Bukittinggi
    2022-41422-0012
    Tersedia di Pustaka Kubang Putih - UIN Sjech M. Djamil Djambek Bukittinggi
    2022-41422-0011
    Tersedia di Pustaka Kubang Putih - UIN Sjech M. Djamil Djambek Bukittinggi
    2018-35981-0010
    Tersedia di Pustaka Kubang Putih - UIN Sjech M. Djamil Djambek Bukittinggi
    2018-35981-0009
    Tersedia di Pustaka Kubang Putih - UIN Sjech M. Djamil Djambek Bukittinggi
    2018-35981-0008
    Tersedia di Pustaka Kubang Putih - UIN Sjech M. Djamil Djambek Bukittinggi
    2018-35981-0007
    Tersedia di Pustaka Kubang Putih - UIN Sjech M. Djamil Djambek Bukittinggi
    2018-35981-0006
    Tersedia di Pustaka Kubang Putih - UIN Sjech M. Djamil Djambek Bukittinggi
    2018-35981-0005
    Tersedia di Pustaka Kubang Putih - UIN Sjech M. Djamil Djambek Bukittinggi
    2018-35981-0004
    Tersedia di Pustaka Kubang Putih - UIN Sjech M. Djamil Djambek Bukittinggi
    2018-35981-0003
    Tersedia di Pustaka Kubang Putih - UIN Sjech M. Djamil Djambek Bukittinggi
    2018-35981-0002
    Tersedia di Pustaka Kubang Putih - UIN Sjech M. Djamil Djambek Bukittinggi
    2018-35981-0001
    Tersedia di Pustaka Kubang Putih - UIN Sjech M. Djamil Djambek Bukittinggi

An Introduction to Support Vector Machines and Other Kernel-based Learning Methods

This is the first comprehensive introduction to Support Vector Machines (SVMs), a generation learning system based on recent advances in statistical learning theory. SVMs deliver state-of-the-art performance in real-world applications such as text categorisation, hand-written character recognition, image classification, biosequences analysis, etc., and are now established as one of the standard tools for machine learning and data mining. Students will find the book both stimulating and accessible, while practitioners will be guided smoothly through the material required for a good grasp of the theory and its applications. The concepts are introduced gradually in accessible and self-contained stages, while the presentation is rigorous and thorough. Pointers to relevant literature and web sites containing software ensure that it forms an ideal starting point for further study. Equally, the book and its associated web site will guide practitioners to updated literature, new applications, and on-line software.

In supervised learning, the learning machine is given a training set of examples (
or inputs) with associated labels (or output values). Usually the examples are in
the form of attribute vectors, so that the input space is a subset of W. Once the
attribute vectors are available, a number of sets of hypotheses could be chosen
for the problem. Among these, linear functions are the best understood and
simplest to apply. Traditional statistics and the classical neural networks literature
have ...

101 Info Tentang Nabi dan Rasul

Menambah Pengetahuan Tentang Nabi dan Rasul

Ada nabi, ada rasul. Hmmm ... bedanya apa, ya? Berapa sih, jumlah nabi dan rasul? Apa sih, tugas nabi dan rasul? Apa saja sifat-sifat nabi dan rasul? Siapakah nabi yang pertama? Apa mukjizat Nabi Idris a.s? Aa Mukjizat Nabi Isa a.s? Siapa nabi yang berani melawan raksasa Jalut? Siapakah nabi yang dimakan paus? Teman-tean akan menemukan jawabannya di buku ini. 101 Info tentang Nabi dan Rasul mengajak Teman-Teman menemukan info-info seputar Nabi dan Rasul secara asyik dan menyenangkan.ÿ[DAR! Mizan, Anak, Inspirasi, Motivasi, Tokoh, Indonesia]

Bagaimana kisah Yunus hingga dimakan paus? Penduduk Ninawa tidakmau
beriman kepada Allah. Akhirnya, Yunus pergi meninggalkan Ninawa.Dia
mengembara tanpatujuan. Dia hampir putus asadan merasa berdosa. Akhirnya,
dia tibadi ...

Sistem penyiaran TV Indonesia

studi kasus TVRI Jabar dan Banten

Broadcasting procedures and system of television in Indonesia, a case study in TVRI of West Java and Banten.

... HE Irma Saktiani itootfl -Ié Slg (11003)' Sistem Penyiaran TV Indonesia (Studi
Kasus 'I'VRIJABAR dan Banten) Irma Saktiani Diterbitkan Pertamakali Dalam
Bahasa Indonesia Oleh Penerbit Kelir, Desember 2007. Komplek Bale Endah ...

Machine Learning and Knowledge Discovery in Databases

European Conference, ECML PKDD 2012, Bristol, UK, September 24-28, 2012. Proceedings

This two-volume set LNAI 7523 and LNAI 7524 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases: ECML PKDD 2012, held in Bristol, UK, in September 2012. The 105 revised research papers presented together with 5 invited talks were carefully reviewed and selected from 443 submissions. The final sections of the proceedings are devoted to Demo and Nectar papers. The Demo track includes 10 papers (from 19 submissions) and the Nectar track includes 4 papers (from 14 submissions). The papers grouped in topical sections on association rules and frequent patterns; Bayesian learning and graphical models; classification; dimensionality reduction, feature selection and extraction; distance-based methods and kernels; ensemble methods; graph and tree mining; large-scale, distributed and parallel mining and learning; multi-relational mining and learning; multi-task learning; natural language processing; online learning and data streams; privacy and security; rankings and recommendations; reinforcement learning and planning; rule mining and subgroup discovery; semi-supervised and transductive learning; sensor data; sequence and string mining; social network mining; spatial and geographical data mining; statistical methods and evaluation; time series and temporal data mining; and transfer learning.

Schaal, S.: Is Imitation Learning the Route to Humanoid Robots? Trends in
Cognitive Sciences 3(6), 233–242 (1999) 2. Abbeel, P., Ng, A.Y.: Apprenticeship
Learning via Inverse Reinforcement Learning. In: Proceedings of the Twenty-first
 ...