Sebanyak 339 item atau buku ditemukan

Discrete and Combinatorial Mathematics (Classic Version)

Originally published in 2004, reissued as part of Pearson's modern classic series.

Originally published in 2004, reissued as part of Pearson's modern classic series.

A Beginner’s Guide to Discrete Mathematics

This introduction to discrete mathematics is aimed at freshmen and sophomores in mathematics and computer science. It begins with a survey of number systems and elementary set theory before moving on to treat data structures, counting, probability, relations and functions, graph theory, matrices, number theory and cryptography. The end of each section contains problem sets with selected solutions, and good examples occur throughout the text.

Graph study is discussed, including Euler and Hamilton cycles and trees. This is a vehicle for some easy proofs, as well as serving as another example of a data structure. Matrices and vectors are then defined.

DISCRETE MATHEMATICS

Written with a strong pedagogical focus, this second edition of the book continues to provide an exhaustive presentation of the fundamental concepts of discrete mathematical structures and their applications in computer science and mathematics. It aims to develop the ability of the students to apply mathematical thought in order to solve computation-related problems. The book is intended not only for the undergraduate and postgraduate students of mathematics but also, most importantly, for the students of Computer Science & Engineering and Computer Applications. The introductory chapter presents an overview of the foundations of the subject, consisting of topics such as logic, set theory, relations, functions, algebraic structures, and graphs. The subsequent chapters provide detailed coverage of each of these topics as well as major areas of discrete mathematics such as combinatorics, lattices and Boolean algebras. Major applications such as computer models and computation, coding theory, cryptography and databases are dealt with in the final chapters of the book. In addition to this, a new chapter on matrices is included in this edition of the book, which forms a part of MCA course curriculum. The book is replete with features which enable the building of a firm foundation of the underlying principles of the subject and also provide adequate scope for testing the comprehension acquired by the students. Each chapter contains numerous worked-out examples within the main discussion as well as several chapter-end Supplementary Examples for revision. The Self-Test and Exercises at the end of each chapter provide large numbers of objective type questions and problems respectively. Answers to objective type questions and hints to exercises are also provided. All these pedagogic features, together with thorough coverage of the subject matter, make this book a readable text for beginners as well as advanced learners of the subject.

Written with a strong pedagogical focus, this second edition of the book continues to provide an exhaustive presentation of the fundamental concepts of discrete mathematical structures and their applications in computer science and ...

Topics in Discrete Mathematics

Dedicated to Jarik Nešetril on the Occasion of his 60th birthday

This book comprises a collection of high quality papers in selected topics of Discrete Mathematics, to celebrate the 60th birthday of Professor Jarik Nešetril. Leading experts have contributed survey and research papers in the areas of Algebraic Combinatorics, Combinatorial Number Theory, Game theory, Ramsey Theory, Graphs and Hypergraphs, Homomorphisms, Graph Colorings and Graph Embeddings.

This book comprises a collection of high quality papers in selected topics of Discrete Mathematics, to celebrate the 60th birthday of Professor Jarik Nešetril.

Computational Support for Discrete Mathematics

DIMACS Workshop, March 12-14, 1992

With recent technological advances in workstations, graphics, graphical user interfaces, and object oriented programming languages, a significant number of researchers are developing general-purpose software and integrated software systems for domains in discrete mathematics, including graph theory, combinatorics, combinatorial optimization, and sets. This software aims to provide effective computational tools for research, applications prototyping, and teaching. In March 1992, DIMACS sponsored a workshop on Computational Support for Discrete Mathematics in order to facilitate interactions between the researchers, developers, and educators who work in these areas. Containing refereed papers based on talks presented at the workshop, this volume documents current and past research in these areas and should provide impetus for new interactions.

Containing refereed papers based on talks presented at the workshop, this volume documents current and past research in these areas and should provide impetus for new interactions.

Discrete Mathematics

As an introduction to discrete mathematics, this text provides a straightforward overview of the range of mathematical techniques available to students. Assuming very little prior knowledge, and with the minimum of technical complication, it gives an account of the foundations of modern mathematics: logic; sets; relations and functions. It then develops these ideas in the context of three particular topics: combinatorics (the mathematics of counting); probability (the mathematics of chance) and graph theory (the mathematics of connections in networks). Worked examples and graded exercises are used throughout to develop ideas and concepts. The format of this book is such that it can be easily used as the basis for a complete modular course in discrete mathematics.

As an introduction to discrete mathematics, this text provides a straightforward overview of the range of mathematical techniques available to students.

Probabilistic Methods for Algorithmic Discrete Mathematics

Leave nothing to chance. This cliche embodies the common belief that ran domness has no place in carefully planned methodologies, every step should be spelled out, each i dotted and each t crossed. In discrete mathematics at least, nothing could be further from the truth. Introducing random choices into algorithms can improve their performance. The application of proba bilistic tools has led to the resolution of combinatorial problems which had resisted attack for decades. The chapters in this volume explore and celebrate this fact. Our intention was to bring together, for the first time, accessible discus sions of the disparate ways in which probabilistic ideas are enriching discrete mathematics. These discussions are aimed at mathematicians with a good combinatorial background but require only a passing acquaintance with the basic definitions in probability (e.g. expected value, conditional probability). A reader who already has a firm grasp on the area will be interested in the original research, novel syntheses, and discussions of ongoing developments scattered throughout the book. Some of the most convincing demonstrations of the power of these tech niques are randomized algorithms for estimating quantities which are hard to compute exactly. One example is the randomized algorithm of Dyer, Frieze and Kannan for estimating the volume of a polyhedron. To illustrate these techniques, we consider a simple related problem. Suppose S is some region of the unit square defined by a system of polynomial inequalities: Pi (x. y) ~ o.

The application of proba bilistic tools has led to the resolution of combinatorial problems which had resisted attack for decades. The chapters in this volume explore and celebrate this fact.

Discrete Mathematics

The advent of fast computers and the search for efficient algorithms revolutionized combinatorics and brought about the field of discrete mathematics. This book is an introduction to the main ideas and results of discrete mathematics, and with its emphasis on algorithms it should be interesting to mathematicians and computer scientists alike. The book is organized into three parts: enumeration, graphs and algorithms, and algebraic systems. There are 600 exercises with hints andsolutions to about half of them. The only prerequisites for understanding everything in the book are linear algebra and calculus at the undergraduate level. Praise for the German edition ... This book is a well-written introduction to discrete mathematics and is highly recommended to every student ofmathematics and computer science as well as to teachers of these topics. --Konrad Engel for MathSciNet Martin Aigner is a professor of mathematics at the Free University of Berlin. He received his PhD at the University of Vienna and has held a number of positions in the USA and Germany before moving to Berlin. He is the author of several books on discrete mathematics, graph theory, and the theory of search. The Monthly article Turan's graph theorem earned him a 1995 Lester R. Ford Prize of theMAA for expository writing, and his book Proofs from the BOOK with Gunter M. Ziegler has been an international success with translations into 12 languages.

Praise for the German edition ... This book is a well-written introduction to discrete mathematics and is highly recommended to every student ofmathematics and computer science as well as to teachers of these topics.

An Introduction to Discrete Mathematics

Intended for a one-term course in discrete mathematics, to prepare freshmen and sophomores for further work in computer science as well as mathematics. Sets, proof techniques, logic, combinatorics, and graph theory are covered in concise form. All topics are motivated by concrete examples, often emphasizing the interplay between computer science and mathematics. Examples also illustrate all definitions. Applications and references cover a wide variety of realistic situations. Coverage of mathematical induction includes the stroung form of induction, and new sections have been added on nonhomogeneous recurrence relations and the essentials of probability.

Intended for a one-term course in discrete mathematics, to prepare freshmen and sophomores for further work in computer science as well as mathematics.