Sebanyak 278 item atau buku ditemukan

An Introduction to Mathematical Analysis

Originally published in 1997, An Introduction to Mathematical Analysis provides a rigorous approach to real analysis and the basic ideas of complex analysis. Although the approach is axiomatic, the language is evocative rather than formal, and the proofs are clear and well motivated. The author writes with the reader always in mind. The text includes a novel and simplified approach to the Lebesgue integral, a topic not usually found in books at this level. The problems are scattered throughout the text, and are designed to get the student actively involved in the development at every stage. "This Introduction to Mathematical Analysis is a very carefully written and well organized presentation of the major theorems in classical real and complex analysis. I can find no fault whatever pertaining to the level of rigor or mathematical precision of the manuscript. All in all I think this is a fine text." Reviewer from Portland State "To summarize I think this text is very good. Its strengths are many. The choices of the problems and examples are well made. The proofs are very to the point and the style makes the text very readable." Reviewer from Michigan State "H. S. Bear seems to be one of the best kept secrets around. His writing in general is superb. This book is a well organized first course in analysis broken into digestible chunks and surprisingly thorough. It covers the basic topics and then introduces the reader to complex analysis and later to Lebesgue integration." James M. Cargal Professor Bear obtained his degree at the University of California, Berkeley with a thesis in functional analysis. He has held permanent positions at several major western universities, as well as visiting appointments at Princeton, the University of California, San Diego, and Erlangen-Nurnberg, Germany. All of these venues involved a ridiculous amount of bad weather, so he went to the University of Hawaii as department chairman in 1969. He served as department chairman for five years, and later served a term as graduate chairman. He has numerous research and expository publications in the areas of functional analysis, real and complex analysis, and measure theory.

I can find no fault whatever pertaining to the level of rigor or mathematical precision of the manuscript. All in all I think this is a fine text." Reviewer from Portland State "To summarize I think this text is very good.

Introduction to Calculus and Analysis I

From the Preface: (...) The book is addressed to students on various levels, to mathematicians, scientists, engineers. It does not pretend to make the subject easy by glossing over difficulties, but rather tries to help the genuinely interested reader by throwing light on the interconnections and purposes of the whole. Instead of obstructing the access to the wealth of facts by lengthy discussions of a fundamental nature we have sometimes postponed such discussions to appendices in the various chapters. Numerous examples and problems are given at the end of various chapters. Some are challenging, some are even difficult; most of them supplement the material in the text.

From the Preface: (...) The book is addressed to students on various levels, to mathematicians, scientists, engineers.

Introduction to Analysis, An,

This is the eBook of the printed book and may not include any media, website access codes, or print supplements that may come packaged with the bound book. For one- or two-semester junior or senior level courses in Advanced Calculus, Analysis I, or Real Analysis. This text prepares students for future courses that use analytic ideas, such as real and complex analysis, partial and ordinary differential equations, numerical analysis, fluid mechanics, and differential geometry. This book is designed to challenge advanced students while encouraging and helping weaker students. Offering readability, practicality and flexibility, Wade presents fundamental theorems and ideas from a practical viewpoint, showing students the motivation behind the mathematics and enabling them to construct their own proofs.

This is the eBook of the printed book and may not include any media, website access codes, or print supplements that may come packaged with the bound book.

An Introduction to Multivariable Mathematics

The text is designed for use in a forty-lecture introductory course covering linear algebra, multivariable differential calculus, and an introduction to real analysis. The core material of the book is arranged to allow for the main introductory material on linear algebra, including basic vector space theory in Euclidean space and the initial theory of matrices and linear systems, to be covered in the first ten or eleven lectures, followed by a similar number of lectures on basic multivariable analysis, including first theorems on differentiable functions on domains in Euclidean space and a brief introduction to submanifolds. The book then concludes with further essential linear algebra, including the theory of determinants, eigenvalues, and the spectral theorem for real symmetric matrices, and further multivariable analysis, including the contraction mapping principle and the inverse and implicit function theorems. There is also an appendix which provides a nine-lecture introduction to real analysis. There are various ways in which the additional material in the appendix could be integrated into a course--for example in the Stanford Mathematics honors program, run as a four-lecture per week program in the Autumn Quarter each year, the first six lectures of the nine-lecture appendix are presented at the rate of one lecture per week in weeks two through seven of the quarter, with the remaining three lectures per week during those weeks being devoted to the main chapters of the text. It is hoped that the text would be suitable for a quarter or semester course for students who have scored well in the BC Calculus advanced placement examination (or equivalent), particularly those who are considering a possible major in mathematics. The author has attempted to make the presentation rigorous and complete, with the clarity and simplicity needed to make it accessible to an appropriately large group of students. Table of Contents: Linear Algebra / Analysis in R / More Linear Algebra / More Analysis in R / Appendix: Introductory Lectures on Real Analysis

The text is designed for use in a forty-lecture introductory course covering linear algebra, multivariable differential calculus, and an introduction to real analysis.

An Introduction to Complex Analysis

Classical and Modern Approaches

Like real analysis, complex analysis has generated methods indispensable to mathematics and its applications. Exploring the interactions between these two branches, this book uses the results of real analysis to lay the foundations of complex analysis and presents a unified structure of mathematical analysis as a whole. To set the groundwork and mitigate the difficulties newcomers often experience, An Introduction to Complex Analysis begins with a complete review of concepts and methods from real analysis, such as metric spaces and the Green-Gauss Integral Formula. The approach leads to brief, clear proofs of basic statements - a distinct advantage for those mainly interested in applications. Alternate approaches, such as Fichera's proof of the Goursat Theorem and Estermann's proof of the Cauchy's Integral Theorem, are also presented for comparison. Discussions include holomorphic functions, the Weierstrass Convergence Theorem, analytic continuation, isolated singularities, homotopy, Residue theory, conformal mappings, special functions and boundary value problems. More than 200 examples and 150 exercises illustrate the subject matter and make this book an ideal text for university courses on complex analysis, while the comprehensive compilation of theories and succinct proofs make this an excellent volume for reference.

More than 200 examples and 150 exercises illustrate the subject matter and make this book an ideal text for university courses on complex analysis, while the comprehensive compilation of theories and succinct proofs make this an excellent ...

An Introduction to Analysis

Part of the Jones and Bartlett International Series in Advanced Mathematics Completely revised and update, the second edition of An Introduction to Analysis presents a concise and sharply focused introdution to the basic concepts of analysis from the development of the real numbers through uniform convergences of a sequence of functions, and includes supplementary material on the calculus of functions of several variables and differential equations. This student-friendly text maintains a cautious and deliberate pace, and examples and figures are used extensively to assist the reader in understanding the concepts and then applying them. Students will become actively engaged in learning process with a broad and comprehensive collection of problems found at the end of each section.

This student-friendly text maintains a cautious and deliberate pace, and examples and figures are used extensively to assist the reader in understanding the concepts and then applying them.

Introduction to Mathematical Analysis

Our goal in this set of lecture notes is to provide students with a strong foundation in mathematical analysis. Such a foundation is crucial for future study of deeper topics of analysis. Students should be familiar with most of the concepts presented here after completing the calculus sequence. However, these concepts will be reinforced through rigorous proofs. The lecture notes contain topics of real analysis usually covered in a 10-week course: the completeness axiom, sequences and convergence, continuity, and differentiation. The lecture notes also contain many well-selected exercises of various levels. Although these topics are written in a more abstract way compared with those available in some textbooks, teachers can choose to simplify them depending on the background of the students. For instance, rather than introducing the topology of the real line to students, related topological concepts can be replaced by more familiar concepts such as open and closed intervals. Some other topics such as lower and upper semicontinuity, differentiation of convex functions, and generalized differentiation of non-differentiable convex functions can be used as optional mathematical projects. In this way, the lecture notes are suitable for teaching students of different backgrounds.

Our goal in this set of lecture notes is to provide students with a strong foundation in mathematical analysis.

Introduction to Calculus and Classical Analysis

This text is intended for an honors calculus course or for an introduction to analysis. Involving rigorous analysis, computational dexterity, and a breadth of applications, it is ideal for undergraduate majors. This third edition includes corrections as well as some additional material. Some features of the text include: The text is completely self-contained and starts with the real number axioms; The integral is defined as the area under the graph, while the area is defined for every subset of the plane; There is a heavy emphasis on computational problems, from the high-school quadratic formula to the formula for the derivative of the zeta function at zero; There are applications from many parts of analysis, e.g., convexity, the Cantor set, continued fractions, the AGM, the theta and zeta functions, transcendental numbers, the Bessel and gamma functions, and many more; Traditionally transcendentally presented material, such as infinite products, the Bernoulli series, and the zeta functional equation, is developed over the reals; and There are 385 problems with all the solutions at the back of the text.

This text is intended for an honors calculus course or for an introduction to analysis.

Introduction to Real Analysis

My purpose in writing this short book has been to present in a well- motivated
and natural sequence the basic ideas of classical real analysis. My intention has
been to offer a book that can be covered from beginning to end in one semester.