Sebanyak 2 item atau buku ditemukan

An Introduction to Mathematical Analysis for Economic Theory and Econometrics

Providing an introduction to mathematical analysis as it applies to economic theory and econometrics, this book bridges the gap that has separated the teaching of basic mathematics for economics and the increasingly advanced mathematics demanded in economics research today. Dean Corbae, Maxwell B. Stinchcombe, and Juraj Zeman equip students with the knowledge of real and functional analysis and measure theory they need to read and do research in economic and econometric theory. Unlike other mathematics textbooks for economics, An Introduction to Mathematical Analysis for Economic Theory and Econometrics takes a unified approach to understanding basic and advanced spaces through the application of the Metric Completion Theorem. This is the concept by which, for example, the real numbers complete the rational numbers and measure spaces complete fields of measurable sets. Another of the book's unique features is its concentration on the mathematical foundations of econometrics. To illustrate difficult concepts, the authors use simple examples drawn from economic theory and econometrics. Accessible and rigorous, the book is self-contained, providing proofs of theorems and assuming only an undergraduate background in calculus and linear algebra. Begins with mathematical analysis and economic examples accessible to advanced undergraduates in order to build intuition for more complex analysis used by graduate students and researchers Takes a unified approach to understanding basic and advanced spaces of numbers through application of the Metric Completion Theorem Focuses on examples from econometrics to explain topics in measure theory

Providing an introduction to mathematical analysis as it applies to economic theory and econometrics, this book bridges the gap that has separated the teaching of basic mathematics for economics and the increasingly advanced mathematics ...

An Introduction to Mathematical Analysis

Originally published in 1997, An Introduction to Mathematical Analysis provides a rigorous approach to real analysis and the basic ideas of complex analysis. Although the approach is axiomatic, the language is evocative rather than formal, and the proofs are clear and well motivated. The author writes with the reader always in mind. The text includes a novel and simplified approach to the Lebesgue integral, a topic not usually found in books at this level. The problems are scattered throughout the text, and are designed to get the student actively involved in the development at every stage. "This Introduction to Mathematical Analysis is a very carefully written and well organized presentation of the major theorems in classical real and complex analysis. I can find no fault whatever pertaining to the level of rigor or mathematical precision of the manuscript. All in all I think this is a fine text." Reviewer from Portland State "To summarize I think this text is very good. Its strengths are many. The choices of the problems and examples are well made. The proofs are very to the point and the style makes the text very readable." Reviewer from Michigan State "H. S. Bear seems to be one of the best kept secrets around. His writing in general is superb. This book is a well organized first course in analysis broken into digestible chunks and surprisingly thorough. It covers the basic topics and then introduces the reader to complex analysis and later to Lebesgue integration." James M. Cargal Professor Bear obtained his degree at the University of California, Berkeley with a thesis in functional analysis. He has held permanent positions at several major western universities, as well as visiting appointments at Princeton, the University of California, San Diego, and Erlangen-Nurnberg, Germany. All of these venues involved a ridiculous amount of bad weather, so he went to the University of Hawaii as department chairman in 1969. He served as department chairman for five years, and later served a term as graduate chairman. He has numerous research and expository publications in the areas of functional analysis, real and complex analysis, and measure theory.

I can find no fault whatever pertaining to the level of rigor or mathematical precision of the manuscript. All in all I think this is a fine text." Reviewer from Portland State "To summarize I think this text is very good.