Sebanyak 5 item atau buku ditemukan

Genetic and Evolutionary Computation--GECCO 2003

Genetic and Evolutionary Computation Conference, Chicago, IL, USA, July 12-16, 2003 : Proceedings

The set LNCS 2723 and LNCS 2724 constitutes the refereed proceedings of the Genetic and Evolutionaty Computation Conference, GECCO 2003, held in Chicago, IL, USA in July 2003. The 193 revised full papers and 93 poster papers presented were carefully reviewed and selected from a total of 417 submissions. The papers are organized in topical sections on a-life adaptive behavior, agents, and ant colony optimization; artificial immune systems; coevolution; DNA, molecular, and quantum computing; evolvable hardware; evolutionary robotics; evolution strategies and evolutionary programming; evolutionary sheduling routing; genetic algorithms; genetic programming; learning classifier systems; real-world applications; and search based softare engineering.

Genetic and Evolutionary Computation Conference, Chicago, IL, USA, July 12-16
, 2003 : Proceedings Erick Cantú-Paz ... We explore the advantages of DNA-like
genomes for evolutionary computation in silico. Coupled with simulations of ...

Genetic And Evolutionary Computation- GECCO 2004

Genetic And Evolutionary Computation Conference, Seattle, Wa, Usa, June 26-30, 2004, Proceedings

MostMOEAsuseadistancemetricorothercrowdingmethodinobjectivespaceinorder to maintain diversity for the non-dominated solutions on the Pareto optimal front. By ensuring diversity among the non-dominated solutions, it is possible to choose from a variety of solutions when attempting to solve a speci?c problem at hand. Supposewehavetwoobjectivefunctionsf (x)andf (x).Inthiscasewecande?ne 1 2 thedistancemetricastheEuclideandistanceinobjectivespacebetweentwoneighboring individuals and we thus obtain a distance given by 2 2 2 d (x, x )= f (x )?f (x )] + f (x )?f (x )] . (1) 1 2 1 1 1 2 2 1 2 2 f wherex andx are two distinct individuals that are neighboring in objective space. If 1 2 2 2 the functions are badly scaled, e.g. ?f (x)] ?f (x)], the distance metric can be 1 2 approximated to 2 2 d (x, x )? f (x )?f (x )] . (2) 1 2 1 1 1 2 f Insomecasesthisapproximationwillresultinanacceptablespreadofsolutionsalong the Pareto front, especially for small gradual slope changes as shown in the illustrated example in Fig. 1. 1.0 0.8 0.6 0.4 0.2 0 0 20 40 60 80 100 f 1 Fig.1.Forfrontswithsmallgradualslopechangesanacceptabledistributioncanbeobtainedeven if one of the objectives (in this casef ) is neglected from the distance calculations. 2 As can be seen in the ?gure, the distances marked by the arrows are not equal, but the solutions can still be seen to cover the front relatively well.

Genetic And Evolutionary Computation Conference, Seattle, Wa, Usa, June 26-
30, 2004, Proceedings Kalyanmoy Deb. A 10 × 10 board requires a neural
network with 100 inputs and 100 outputs, but is still simple enough to be solved
without ...

Genetic and Evolutionary Computation

Medical Applications

Genetic and Evolutionary Computation: Medical Applications provides an overview of the range of GEC techniques being applied to medicine and healthcare in a context that is relevant not only for existing GEC practitioners but also those from other disciplines, particularly health professionals. There is rapidly increasing interest in applying evolutionary computation to problems in medicine, but to date no text that introduces evolutionary computation in a medical context. By explaining the basic introductory theory, typical application areas and detailed implementation in one coherent volume, this book will appeal to a wide audience from software developers to medical scientists. Centred around a set of nine case studies on the application of GEC to different areas of medicine, the book offers an overview of applications of GEC to medicine, describes applications in which GEC is used to analyse medical images and data sets, derive advanced models, and suggest diagnoses and treatments, finally providing hints about possible future advancements of genetic and evolutionary computation in medicine. Explores the rapidly growing area of genetic and evolutionary computation in context of its viable and exciting payoffs in the field of medical applications. Explains the underlying theory, typical applications and detailed implementation. Includes general sections about the applications of GEC to medicine and their expected future developments, as well as specific sections on applications of GEC to medical imaging, analysis of medical data sets, advanced modelling, diagnosis and treatment. Features a wide range of tables, illustrations diagrams and photographs.

By explaining the basic introductory theory, typical application areas and detailed implementation in one coherent volume, this book will appeal to a wide audience from software developers to medical scientists.