Sebanyak 42 item atau buku ditemukan

Introduction to Real Analysis

Sophomore level course in real analysis (one-variable advanced calculus). Prerequisite: a course introducing proofs and the notation and basic facts concerning sets and functions. Topics: completeness, sequences, continuity, differentiation, integration, Taylor series.

Sophomore level course in real analysis (one-variable advanced calculus).

An Introduction to Nonstandard Real Analysis

The aim of this book is to make Robinson's discovery, and some of the subsequent research, available to students with a background in undergraduate mathematics. In its various forms, the manuscript was used by the second author in several graduate courses at the University of Illinois at Urbana-Champaign. The first chapter and parts of the rest of the book can be used in an advanced undergraduate course. Research mathematicians who want a quick introduction to nonstandard analysis will also find it useful. The main addition of this book to the contributions of previous textbooks on nonstandard analysis (12,37,42,46) is the first chapter, which eases the reader into the subject with an elementary model suitable for the calculus, and the fourth chapter on measure theory in nonstandard models.

The aim of this book is to make Robinson's discovery, and some of the subsequent research, available to students with a background in undergraduate mathematics.

An Introduction to Real Analysis

This book provides a compact, but thorough, introduction to the subject of Real Analysis. It is intended for a senior undergraduate and for a beginning graduate one-semester course.

This book provides a compact, but thorough, introduction to the subject of Real Analysis. It is intended for a senior undergraduate and for a beginning graduate one-semester course.

An Introduction to Classical Real Analysis

This classic book is a text for a standard introductory course in real analysis, covering sequences and series, limits and continuity, differentiation, elementary transcendental functions, integration, infinite series and products, and trigonometric series. The author has scrupulously avoided any presumption at all that the reader has any knowledge of mathematical concepts until they are formally presented in the book. One significant way in which this book differs from other texts at this level is that the integral which is first mentioned is the Lebesgue integral on the real line. There are at least three good reasons for doing this. First, this approach is no more difficult to understand than is the traditional theory of the Riemann integral. Second, the readers will profit from acquiring a thorough understanding of Lebesgue integration on Euclidean spaces before they enter into a study of abstract measure theory. Third, this is the integral that is most useful to current applied mathematicians and theoretical scientists, and is essential for any serious work with trigonometric series. The exercise sets are a particularly attractive feature of this book. A great many of the exercises are projects of many parts which, when completed in the order given, lead the student by easy stages to important and interesting results. Many of the exercises are supplied with copious hints. This new printing contains a large number of corrections and a short author biography as well as a list of selected publications of the author. This classic book is a text for a standard introductory course in real analysis, covering sequences and series, limits and continuity, differentiation, elementary transcendental functions, integration, infinite series and products, and trigonometric series. The author has scrupulously avoided any presumption at all that the reader has any knowledge of mathematical concepts until they are formally presented in the book. - See more at: http://bookstore.ams.org/CHEL-376-H/#sthash.wHQ1vpdk.dpuf This classic book is a text for a standard introductory course in real analysis, covering sequences and series, limits and continuity, differentiation, elementary transcendental functions, integration, infinite series and products, and trigonometric series. The author has scrupulously avoided any presumption at all that the reader has any knowledge of mathematical concepts until they are formally presented in the book. One significant way in which this book differs from other texts at this level is that the integral which is first mentioned is the Lebesgue integral on the real line. There are at least three good reasons for doing this. First, this approach is no more difficult to understand than is the traditional theory of the Riemann integral. Second, the readers will profit from acquiring a thorough understanding of Lebesgue integration on Euclidean spaces before they enter into a study of abstract measure theory. Third, this is the integral that is most useful to current applied mathematicians and theoretical scientists, and is essential for any serious work with trigonometric series. The exercise sets are a particularly attractive feature of this book. A great many of the exercises are projects of many parts which, when completed in the order given, lead the student by easy stages to important and interesting results. Many of the exercises are supplied with copious hints. This new printing contains a large number of corrections and a short author biography as well as a list of selected publications of the author. This classic book is a text for a standard introductory course in real analysis, covering sequences and series, limits and continuity, differentiation, elementary transcendental functions, integration, infinite series and products, and trigonometric series. The author has scrupulously avoided any presumption at all that the reader has any knowledge of mathematical concepts until they are formally presented in the book. - See more at: http://bookstore.ams.org/CHEL-376-H/#sthash.wHQ1vpdk.dpuf

This classic book is a text for a standard introductory course in real analysis, covering sequences and series, limits and continuity, differentiation, elementary transcendental functions, integration, infinite series and products, and ...

Real Analysis with an Introduction to Wavelets and Applications

Real Analysis with an Introduction to Wavelets and Applications is an in-depth look at real analysis and its applications, including an introduction to wavelet analysis, a popular topic in "applied real analysis". This text makes a very natural connection between the classic pure analysis and the applied topics, including measure theory, Lebesgue Integral, harmonic analysis and wavelet theory with many associated applications. The text is relatively elementary at the start, but the level of difficulty steadily increases The book contains many clear, detailed examples, case studies and exercises Many real world applications relating to measure theory and pure analysis Introduction to wavelet analysis

This text makes a very natural connection between the classic pure analysis and the applied topics, including measure theory, Lebesgue Integral, harmonic analysis and wavelet theory with many associated applications.

Spaces: An Introduction to Real Analysis

Spaces is a modern introduction to real analysis at the advanced undergraduate level. It is forward-looking in the sense that it first and foremost aims to provide students with the concepts and techniques they need in order to follow more advanced courses in mathematical analysis and neighboring fields. The only prerequisites are a solid understanding of calculus and linear algebra. Two introductory chapters will help students with the transition from computation-based calculus to theory-based analysis. The main topics covered are metric spaces, spaces of continuous functions, normed spaces, differentiation in normed spaces, measure and integration theory, and Fourier series. Although some of the topics are more advanced than what is usually found in books of this level, care is taken to present the material in a way that is suitable for the intended audience: concepts are carefully introduced and motivated, and proofs are presented in full detail. Applications to differential equations and Fourier analysis are used to illustrate the power of the theory, and exercises of all levels from routine to real challenges help students develop their skills and understanding. The text has been tested in classes at the University of Oslo over a number of years.

The text has been tested in classes at the University of Oslo over a number of years.