A computationally oriented comparison of solution algorithms for two stage and jointly chance constrained stochastic linear programming problems, this is the first book to present comparative computational results with several major stochastic programming solution approaches. The following methods are considered: regularized decomposition, stochastic decomposition and successive discrete approximation methods for two stage problems; cutting plane methods, and a reduced gradient method for jointly chance constrained problems. The first part of the book introduces the algorithms, including a unified approach to decomposition methods and their regularized counterparts. The second part addresses computer implementation of the methods, describes a testing environment based on a model management system, and presents comparative computational results with the various algorithms. Emphasis is on the computational behavior of the algorithms.
This section is devoted to solution approaches in stochastic linear programming.
We do not intend to give a complete survey. Our aim is to summarize some of the
main approaches with a detailed presentation only for those methods, which ...
Arus kaum buruh dari daerah sekitar kota atau dari daerah pedesaan yang
masuk kota yang lazim disebut urbanisasi, telah menimbulkan masalah kota dan
masalah kemanusiaan. Kaum buruh dengan upah rendah tidak mampu
membangun atau menyewa tempat tinggal yang layak. Mereka tinggal berdesak-
desak dalam barak-barak atau rumah-rumah yang telah jadi puing dan
seharusnya sudah dibongkar. Pada permulaan abad XIX lahirlah kaum proletar
baru, kelas kaum ...