Sebanyak 362 item atau buku ditemukan

An Introduction to Linear Ordinary Differential Equations Using the Impulsive Response Method and Factorization

This book presents a method for solving linear ordinary differential equations based on the factorization of the differential operator. The approach for the case of constant coefficients is elementary, and only requires a basic knowledge of calculus and linear algebra. In particular, the book avoids the use of distribution theory, as well as the other more advanced approaches: Laplace transform, linear systems, the general theory of linear equations with variable coefficients and variation of parameters. The case of variable coefficients is addressed using Mammana’s result for the factorization of a real linear ordinary differential operator into a product of first-order (complex) factors, as well as a recent generalization of this result to the case of complex-valued coefficients.

This book presents a method for solving linear ordinary differential equations based on the factorization of the differential operator.

Introduction to Partial Differential Equations

A Computational Approach

This is the softcover reprint of a popular book teaching the basic analytical and computational methods of partial differential equations. It includes coverage of standard topics such as separation of variables, Fourier analysis, and energy estimates.

This book teaches basic methods of partial differential equations and introduces related important ideas associated with the analysis of numerical methods for those partial differential equations.

Introduction to Partial Differential Equations

This textbook is designed for a one year course covering the fundamentals of partial differential equations, geared towards advanced undergraduates and beginning graduate students in mathematics, science, engineering, and elsewhere. The exposition carefully balances solution techniques, mathematical rigor, and significant applications, all illustrated by numerous examples. Extensive exercise sets appear at the end of almost every subsection, and include straightforward computational problems to develop and reinforce new techniques and results, details on theoretical developments and proofs, challenging projects both computational and conceptual, and supplementary material that motivates the student to delve further into the subject. No previous experience with the subject of partial differential equations or Fourier theory is assumed, the main prerequisites being undergraduate calculus, both one- and multi-variable, ordinary differential equations, and basic linear algebra. While the classical topics of separation of variables, Fourier analysis, boundary value problems, Green's functions, and special functions continue to form the core of an introductory course, the inclusion of nonlinear equations, shock wave dynamics, symmetry and similarity, the Maximum Principle, financial models, dispersion and solutions, Huygens' Principle, quantum mechanical systems, and more make this text well attuned to recent developments and trends in this active field of contemporary research. Numerical approximation schemes are an important component of any introductory course, and the text covers the two most basic approaches: finite differences and finite elements.

While the classical topics of separation of variables, Fourier analysis, boundary value problems, Green's functions, and special functions continue to form the core of an introductory course, the inclusion of nonlinear equations, shock wave ...

An introduction to nonlinear partial differential equations

Uses an analytical and techniques-oriented approach to present a concise introduction to the subject focusing on time-evolution problems. Emphasizes hyperbolic and parabolic problems and includes a range of applications--chemistry, porous media, biological problems, traffic flow, reactors, heat transfer and detonation. Packed with exercises, examples and illustrations.

Flexible enough to enable instructors to adapt portions of the book to their own curricula, An Introduction to Nonlinear Partial Differential Equations works effectively in first courses on nonlinear PDEs, second course on PDEs, and in ...

Introduction to Differential Equations Using Sage

David Joyner and Marshall Hampton’s lucid textbook explains differential equations using the free and open-source mathematical software Sage. Since its release in 2005, Sage has acquired a substantial following among mathematicians, but its first user was Joyner, who is credited with helping famed mathematician William Stein turn the program into a usable and popular choice. Introduction to Differential Equations Using Sage extends Stein's work by creating a classroom tool that allows both differential equations and Sage to be taught concurrently. It’s a creative and forward-thinking approach to math instruction. Topics include: • First-Order Differential Equations • Incorporation of Newtonian Mechanics• Second-Order Differential Equations• The Annihilator Method• Using Linear Algebra with Differential Equations• Nonlinear Systems• Partial Differential Equations• Romeo and Juliet

Introduction to Differential Equations Using Sage extends Stein's work by creating a classroom tool that allows both differential equations and Sage to be taught concurrently.

Introduction to Numerical Methods for Time Dependent Differential Equations

Introduces both the fundamentals of time dependent differential equations and their numerical solutions Introduction to Numerical Methods for Time Dependent Differential Equations delves into the underlying mathematical theory needed to solve time dependent differential equations numerically. Written as a self-contained introduction, the book is divided into two parts to emphasize both ordinary differential equations (ODEs) and partial differential equations (PDEs). Beginning with ODEs and their approximations, the authors provide a crucial presentation of fundamental notions, such as the theory of scalar equations, finite difference approximations, and the Explicit Euler method. Next, a discussion on higher order approximations, implicit methods, multistep methods, Fourier interpolation, PDEs in one space dimension as well as their related systems is provided. Introduction to Numerical Methods for Time Dependent Differential Equations features: A step-by-step discussion of the procedures needed to prove the stability of difference approximations Multiple exercises throughout with select answers, providing readers with a practical guide to understanding the approximations of differential equations A simplified approach in a one space dimension Analytical theory for difference approximations that is particularly useful to clarify procedures Introduction to Numerical Methods for Time Dependent Differential Equations is an excellent textbook for upper-undergraduate courses in applied mathematics, engineering, and physics as well as a useful reference for physical scientists, engineers, numerical analysts, and mathematical modelers who use numerical experiments to test designs or predict and investigate phenomena from many disciplines.

Written as a self-contained introduction, the book is divided into two parts to emphasize both ordinary differential equations (ODEs) and partial differential equations (PDEs).

Student Solutions Manual, A Modern Introduction to Differential Equations

Student Solutions Manual, A Modern Introduction to Differential Equations

Student Solutions Manual, A Modern Introduction to Differential Equations