This book provides a rigorous course in the calculus of functions of a real variable. Its gentle approach, particularly in its early chapters, makes it especially suitable for students who are not headed for graduate school but, for those who are, this book also provides the opportunity to engage in a penetrating study of real analysis.The companion onscreen version of this text contains hundreds of links to alternative approaches, more complete explanations and solutions to exercises; links that make it more friendly than any printed book could be. In addition, there are links to a wealth of optional material that an instructor can select for a more advanced course, and that students can use as a reference long after their first course has ended. The on-screen version also provides exercises that can be worked interactively with the help of the computer algebra systems that are bundled with Scientific Notebook.
Mathematics education in schools has seen a revolution in recent years. Students everywhere expect the subject to be well-motivated, relevant and practical. When such students reach higher education, the traditional development of analysis, often divorced from the calculus they learned at school, seems highly inappropriate. Shouldn't every step in a first course in analysis arise naturally from the student's experience of functions and calculus in school? And shouldn't such a course take every opportunity to endorse and extend the student's basic knowledge of functions? In Yet Another Introduction to Analysis, the author steers a simple and well-motivated path through the central ideas of real analysis. Each concept is introduced only after its need has become clear and after it has already been used informally. Wherever appropriate, new ideas are related to common topics in math curricula and are used to extend the reader's understanding of those topics. In this book the readers are led carefully through every step in such a way that they will soon be predicting the next step for themselves. In this way students will not only understand analysis, but also enjoy it.
In this book the readers are led carefully through every step in such a way that they will soon be predicting the next step for themselves. In this way students will not only understand analysis, but also enjoy it.
Sophomore level course in real analysis (one-variable advanced calculus). Prerequisite: a course introducing proofs and the notation and basic facts concerning sets and functions. Topics: completeness, sequences, continuity, differentiation, integration, Taylor series.
Written for junior and senior undergraduates, this remarkably clear and accessible treatment covers set theory, the real number system, metric spaces, continuous functions, Riemann integration, multiple integrals, and more. 1968 edition.
Written for junior and senior undergraduates, this remarkably clear and accessible treatment covers set theory, the real number system, metric spaces, continuous functions, Riemann integration, multiple integrals, and more. 1968 edition.
An Introduction to Analysis, Second Edition provides a mathematically rigorous introduction to analysis of real-valued functions of one variable. The text is written to ease the transition from primarily computational to primarily theoretical mathematics. Numerous examples and exercises help students to understand mathematical proofs in an abstract setting, as well as to be able to formulate and write them. The material is as clear and intuitive as possible while still maintaining mathematical integrity. The author presents abstract mathematics in a way that makes the subject both understandable and exciting to students.
The aim of this book is to make Robinson's discovery, and some of the subsequent research, available to students with a background in undergraduate mathematics. In its various forms, the manuscript was used by the second author in several graduate courses at the University of Illinois at Urbana-Champaign. The first chapter and parts of the rest of the book can be used in an advanced undergraduate course. Research mathematicians who want a quick introduction to nonstandard analysis will also find it useful. The main addition of this book to the contributions of previous textbooks on nonstandard analysis (12,37,42,46) is the first chapter, which eases the reader into the subject with an elementary model suitable for the calculus, and the fourth chapter on measure theory in nonstandard models.
The aim of this book is to make Robinson's discovery, and some of the subsequent research, available to students with a background in undergraduate mathematics.
Introduction to Analysis is designed to bridge the gap between the intuitive calculus usually offered at the undergraduate level and the sophisticated analysis courses the student encounters at the graduate level. In this book the student is given the vocabulary and facts necessary for further study in analysis. The course for which it is designed is usually offered at the junior level, and it is assumed that the student has little or no previous experience with proofs in analysis. A considerable amount of time is spent motivating the theorems and proofs and developing the reader's intuition. Of course, that intuition must be tempered with the realization that rigorous proofs are required for theorems. The topics are quite standard: convergence of sequences, limits of functions, continuity, differentiation, the Riemann integral, infinite series, power series, and convergence of sequences of functions. Many examples are given to illustrate the theory, and exercises at the end of each chapter are keyed to each section. Also, at the end of each section, one finds several Projects. The purpose of a Project is to give the reader a substantial mathematical problem and the necessary guidance to solve that problem. A Project is distinguished from an exercise in that the solution of a Project is a multi-step process requiring assistance for the beginner student.
This book is designed to bridge the gap between the intuitive calculus usually offered at the undergraduate level and the sophisticated analysis encountered at the senior or first-year graduate level.
This book provides a compact, but thorough, introduction to the subject of Real Analysis. It is intended for a senior undergraduate and for a beginning graduate one-semester course.
This book provides a compact, but thorough, introduction to the subject of Real Analysis. It is intended for a senior undergraduate and for a beginning graduate one-semester course.
Real Analysis with an Introduction to Wavelets and Applications is an in-depth look at real analysis and its applications, including an introduction to wavelet analysis, a popular topic in "applied real analysis". This text makes a very natural connection between the classic pure analysis and the applied topics, including measure theory, Lebesgue Integral, harmonic analysis and wavelet theory with many associated applications. The text is relatively elementary at the start, but the level of difficulty steadily increases The book contains many clear, detailed examples, case studies and exercises Many real world applications relating to measure theory and pure analysis Introduction to wavelet analysis
This text makes a very natural connection between the classic pure analysis and the applied topics, including measure theory, Lebesgue Integral, harmonic analysis and wavelet theory with many associated applications.